## Estimation of hydrogen bond energy in *n*-alkanols from the gas chromatography data

R. V. Golovnya† and T. E. Kuz'menko\*

N. M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 ul. Kosygina, 119991 Moscow, Russian Federation. Fax: +7 (095) 137 4101. E-mail: chembio@glas.apc.org

The retention factors of  $C_1$ — $C_9$  n-alkanols on a capillary column with the SE-30 nonpolar phase were determined for temperatures between 320 and 400 K. From the temperature dependence of the free energy change, variations in the enthalpy of sorption of n-alkanols on the SE-30 polymethylsiloxane phase were calculated. The difference between the enthalpies of condensation and sorption was used to estimate the contribution of hydrogen bonding to self-association of pure liquid alcohols. The calculated energies of hydrogen bonds in liquid n-alkanols are in good agreement with the published data.

**Key words:** capillary gas chromatography, *n*-alkanols, SE-30 stationary phase, enthalpy of sorption.

The structure and properties of *n*-alkanols are largely governed by their ability for self-association in pure liquids through hydrogen bonding. Liquid alkanols are complex systems in which monomers coexist with linear and cyclic associates. The change of enthalpy of alkanols due to hydrogen bond formation is usually determined by investigating the properties of binary mixtures of *n*-alkanols  $C_1-C_{12}$ ) and hydrocarbons  $C_6-C_{12}$ ) at ambient temperature or at elevated (up to 60 °C) temperatures by various physicochemical methods. 1-7 Numerous theoretical models taking account of the composition and structure of associated liquids and the nature of intermolecular interaction (IMI) occurring in the liquids have been proposed. $^{8-13}$  The criterion of applicability of models is the agreement between the association parameters calculated in terms of these models and those obtained by calorimetric measurements. All the measurements are fairly laborious and the resulting values of the enthalpy change upon hydrogen bond formation in alcohols are varied over a broad range  $(16-27 \text{ kJ mol}^{-1})$ . The purpose of this present work is to determine thermodynamic characteristics of sorption of *n*-alkanols on a capillary column with the SE-30 nonpolar phase by gas chromatography and to use the results for estimating the energy of hydrogen bond formation in a pure liquid consisting of associated alkanol molecules.

## **Experimental**

Gas chromatographic analysis of *n*-alkanols ( $C_1-C_9$ ) was conducted on a Micromat 412 chromatograph (Finland) with a quartz capillary column (25 m × 0.32 mm) with SE-30 (Nordian Instr.) as the stationary phase (SP); the SP layer thickness was  $d_f=1.0~\mu m$ . The temperature of the flame ionization detector and the injector was 200 °C. The measurements were per-

The differential molar free energy of n-alkanols for GC sorption was calculated from the relation<sup>15</sup>

$$\Delta G_{S}^{T} = -RT \ln(k' \cdot \beta), \tag{1}$$

where R is the universal gas constant, equal to 8.314 kJ (mol K)<sup>-1</sup>; T/K is the temperature of analysis;  $\beta$  is the phase ratio calculated as follows:<sup>16</sup>

$$\beta = (d_{\rm c} - 2d_{\rm f})^2 / 4(d_{\rm c}d_{\rm f} - d_{\rm f}^2),\tag{2}$$

where  $d_c$  is the internal diameter of the column.

**Table 1.** Values of k' for n-alkanols on a capillary column with the SE-30 stationary phase

| <i>n</i> -Alkanol | k' at $T/K$ |       |       |        |       |       |       |  |  |
|-------------------|-------------|-------|-------|--------|-------|-------|-------|--|--|
|                   | 321         | 331   | 339   | 373    | 383   | 393   | 403   |  |  |
| Methanol          | 0.161       | 0.140 | 0.118 | _      | _     | _     | _     |  |  |
| Ethanol           | 0.368       | 0.285 | 0.231 | _      |       | _     |       |  |  |
| Propanol          | 1.015       | 0.749 | 0.592 | 0.229  | 0.190 | 0.159 | 0.136 |  |  |
| Butanol           | 2.699       | 1.901 | 1.450 | 0.481  | 0.384 | 0.313 | 0.260 |  |  |
| Pentanol          | 6.895       | 4.692 | 3.443 | 0.975  | 0.755 | 0.597 | 0.481 |  |  |
| Hexanol           | _           |       | _     | 1.933  | 1.451 | 1.116 | 0.871 |  |  |
| Heptanol          | _           | _     | _     | 3.795  | 2.762 | 2.057 | 1.561 |  |  |
| Octanol           | _           | _     | _     | 7.390  | 5.197 | 3.762 | 2.774 |  |  |
| Nonanol           | _           | _     | _     | 14.300 | 9.738 | 6.743 | 4.901 |  |  |

*Note.* The difference between the minimum and maximum k' values over five—seven measurements was 0.2—0.4% for  $C_2$ — $C_9$  n-alkanols and 1.5—2.0% for methanol.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 979-982, June, 2001.

formed under isothermal conditions at temperatures of 48, 58, 66, 100, 110, 120, and 130 °C. Helium was used as a carrier gas, the split ratio at the inlet of the column was 1:100. The sample volume was  $0.5-1.0~\mu L$  of a vaporous mixture of n-alkanols. The hold-up time needed to calculate the retention factor k' was determined as retention time of methane injected into the column simultaneously with the sample. The k' values for n-alkanols at various temperatures are given in Table 1.

<sup>†</sup> Deceased.

The change in enthalpy  $\Delta H_S$  and entropy  $\Delta S_S$  of *n*-alkanols upon sorption were determined using the equation

$$\Delta G_{\rm S}^{\rm T} = \Delta H_{\rm S} - T \Delta S_{\rm S} \tag{3}$$

for narrow temperature ranges, 321-339 K and 373-403 K.

The  $\Delta H_{\rm V}$  values needed to calculate the contribution of hydrogen bonding to the enthalpy of n-alkanols were taken from a handbook 17 or calculated using the Clapeyron—Clausius equation for liquid—vapor systems. 18

$$\Delta H_{\rm V}^{\rm T} = RT^2(\Delta \ln p^{\circ}/\Delta T). \tag{4}$$

The vapor pressures at saturation  $p^{\circ}$  were taken from a handbook. 19

## **Results and Discussion**

During GC analysis, the monomeric alkanol molecules occur under conditions of infinite dilution in the mobile and stationary phases. We suggested that the nonspecific interactions between the monomeric alkanol molecules and the SP simulate the IMI component caused by dispersion forces in pure alkanols. In this case, GC determination of the changes in the thermodynamic characteristics of alcohols upon sorption could be used for indirect estimation of the energy of hydrogen bonds in alkanol associates. The use of capillary columns permits relatively easy determination of the thermodynamic characteristics of sorption, and the use of quartz columns minimizes the possible distortion of results due to the adsorption on the column walls.

The differential molar free energy of sorption of a compound  $(\Delta G_S^T)$  is known to be the sum of the differential molar free energies of condensation of the monomers in the stationary phase ( $\Delta G_{\rm V}$ ) and the molar excess energy of mixing ( $\Delta G_{\rm E}$ ) of the substance with the stationary phase 14

$$-\Delta G_{S}^{T} = -\Delta G_{V} + \Delta G_{E}.$$
 (5)

Equation (5) is valid for substances whose molecules exist as monomers both in pure liquid and in the vapor.

For the compounds under study, which are capable of forming associates, the free energy of evaporation of one mole of substance  $\Delta G_{V}$  can be represented by

$$\Delta G_{V}' = \Delta G_{ass} + \Delta G_{Vm}, \tag{6}$$

where  $\Delta G_{\rm ass}$  is the differential molar free energy of decomposition of one mole of the associate into individual molecules;  $\Delta G_{Vm}$  is the differential molar free energy of evaporation of monomeric molecules from pure liquid, which is a mixture of monomers and associates. In the case of alkanols whose molecules are associated through the formation of intermolecular hydrogen bonds, we obtain

$$\Delta G_{\rm V'} = \Delta G_{\rm Vm} + \Delta G_{\rm H-b}, \tag{7}$$

where  $\Delta G_{\text{H-b}}$  is the differential molar free energy for the cleavage of hydrogen bonds. Similarly, the change in the enthalpy upon evaporation from pure liquid  $\Delta H_{\rm V}$  for associated alkanols is described by the equation

$$\Delta H_{\rm V} = \Delta H_{\rm Vm} + \Delta H_{\rm H-b},\tag{8}$$

where  $\Delta H_{\rm Vm}$  is the differential molar enthalpy of evaporation of monomeric alkanol molecules from a mixture of monomers and associates, and  $\Delta H_{\text{H-b}}$  is the molar enthalpy of hydrogen bond cleavage.

In a chromatographic process, the alkanol molecules, which occur under conditions close to infinite dilution by the carrier gas, interact with the stationary phase as monomers; thus, Eq. (5) assumes the form

$$-\Delta G_{\rm S}^{\rm T} = -\Delta G_{\rm Vm} + \Delta G_{\rm E}.\tag{9}$$

The differential molar enthalpy of sorption of monomeric alkanol molecules by the SP ( $\Delta H_{\rm S}$ ) is expressed by the equation

$$\Delta H_{\rm S} = -\Delta H_{\rm Vm} + \Delta H_{\rm E},\tag{10}$$

where  $\Delta H_{\rm E}$  is the differential excess molar enthalpy of mixing. Under conditions of GC analysis, the contribution of this term is usually small and, hence, it can be neglected. Thus,

$$\Delta H_{\rm S} \approx -\Delta H_{\rm Vm}.$$
 (11)

**Table 2.** Values of  $\Delta G_S^T$  for sorption of *n*-alkanols on the SE-30 stationary phase

| <i>n</i> -Alkanol | $-\Delta G_S^T/kJ \text{ mol}^{-1}$ at $T/K$ |      |      |      |      |      |      |  |
|-------------------|----------------------------------------------|------|------|------|------|------|------|--|
|                   | 321                                          | 331  | 339  | 373  | 383  | 393  | 403  |  |
| Methanol          | 6.8                                          | 6.6  | 6.3  | _    | _    | _    | _    |  |
| Ethanol           | 9.0                                          | 8.6  | 8.2  | _    | _    | _    | _    |  |
| Propanol          | 11.7                                         | 11.2 | 10.8 | 9.0  | 8.6  | 8.3  | 8.0  |  |
| Butanol           | 14.3                                         | 13.8 | 13.4 | 11.3 | 10.9 | 10.5 | 10.1 |  |
| Pentanol          | 16.8                                         | 16.3 | 15.8 | 13.5 | 13.0 | 12.6 | 12.2 |  |
| Hexanol           | _                                            | _    | _    | 15.6 | 15.1 | 14.6 | 14.2 |  |
| Heptanol          | _                                            | _    | _    | 17.7 | 17.2 | 16.6 | 16.1 |  |
| Octanol           | _                                            | _    | _    | 19.8 | 19.2 | 18.6 | 18.1 |  |
| Nonanol           | _                                            | _    | _    | 21.2 | 21.2 | 20.5 | 20.0 |  |

Parameter 321 K 331 K 339 K 373 K 393 K 403 K 383 K -3.8-3.5-3.2-2.8-2.5-23-2.1a -2.6-2.5-2.1-2.1-2.0-2.0b -2.60.99984 0.99988 0.99983 0.99981 0.99981 0.99971 0.99976

0.09

0.09

**Table 3.** Characteristics of the linear dependencies of  $\Delta G_S^T$  on the number of carbon atoms in the *n*-alkanol

0.06 *Note.* r is the correlation coefficient, sd is the standard deviation for the equation  $\Delta G_S^T = a + bn$ .

Taking into account the fact that  $\Delta H_{\rm S}$  and  $\Delta H_{\rm V}$  for the sorption have opposite signs, it follows from Eqs. (8) and (11) that

0.06

sd

0.05

$$\Delta H_{\text{H-b}} = \Delta H_{\text{V}} - |\Delta H_{\text{S}}|,\tag{12}$$

where  $\Delta H_{\rm V}$  is the enthalpy of evaporation of alkanol from pure liquid found by an independent method, e.g., by calorimetry.

In order to verify the method proposed for the estimation of the  $\Delta H_{\text{H-b}}$  values for *n*-alkanols in pure liquid, the  $\Delta G_S^T$  values for the sorption of  $C_1-C_9$ n-alkanols were calculated from the retention factors k'(see Table 1) on a quartz capillary column with SE-30. As follows from Table 2, the  $\Delta G_S^T$  values obey a linear dependence on the number of C atoms in the alkanol molecule and gradually decrease with an increase in the temperature of analysis. It was shown in some experiments that the coefficients b characterizing the free energy of sorption of a methylene unit are close for the homologous series of *n*-alkanols and *n*-alkanes and decrease within the same limits as the temperature increases from 351 to 403 K. This indicates that the crucial role in the interaction of alkanols with the SE-30 nonpolar phase is played by dispersion inter-

The temperature dependence of  $\Delta G_S^T$  allows one to determine the  $\Delta H_{\rm S}$  values as well as the entropy changes  $(\Delta S_S)$  for the sorption of alkanols. Tables 4 and 5 shows

**Table 4.** Values  $\Delta H_S$  (kJ mol<sup>-1</sup>) and  $\Delta S_S$  (J (mol K)<sup>-1</sup>) for n-alkanols

| n-Alkanol | 321—                | 339 K               | 373—403 K           |                          |  |
|-----------|---------------------|---------------------|---------------------|--------------------------|--|
|           | $-\Delta H_{\rm S}$ | $-\Delta S_{\rm S}$ | $-\Delta H_{\rm S}$ | $-\Delta S_{\mathrm{S}}$ |  |
| Methanol  | 15.6                | 27.4                | _                   | _                        |  |
| Ethanol   | 23.4                | 44.9                | _                   | _                        |  |
| Propanol  | 27.2                | 48.3                | 21.7                | 34.2                     |  |
| Butanol   | 31.3                | 52.7                | 25.7                | 38.6                     |  |
| Pentanol  | 34.8                | 56.0                | 29.5                | 42.9                     |  |
| Hexanol   | _                   | _                   | 33.2                | 47.2                     |  |
| Heptanol  | _                   | _                   | 37.0                | 51.7                     |  |
| Octanol   | _                   | _                   | 40.8                | 56.3                     |  |
| Nonanol   | _                   | _                   | 44.8                | 61.7                     |  |

Note. In the 321-339 K range, the linear dependences refer to n = 2-5 because the  $\Delta H_S$  and  $\Delta S_S$  for methanol are determined with great uncertainty (see the note to Table 1).

the resulting  $\Delta H_{\rm S}$  and  $\Delta S_{\rm S}$  values and the coefficients of linear equations relating the enthalpy and entropy of sorption of n-alkanols to the number of C atoms (n) in the molecule. As the temperature increases, the  $\Delta H_{\rm S}$ and  $\Delta S_{\rm S}$  values decrease in magnitude; however, the contribution of the entropy constituent  $(T\Delta S_S)$  to the free energy for the sorption of alkanols by the nonpolar phase somewhat increases.

0.10

0.09

The  $\Delta H_{\rm S}$  and  $\Delta H_{\rm V}$  values given in Table 4 were used to calculate the enthalpies of hydrogen bond formation  $\Delta H_{\text{H-b}}$ . The calculated  $\Delta H_{\text{H-b}}$  values, together with the  $\Delta H_{\rm V}$  values used in the calculations are listed in Table 6. The  $\Delta H_{\rm V}$  values for the  $C_1-C_5$  n-alkanols in the 321-339 K temperature range were found by interpolation using the linear dependences  $\Delta H_{\rm V} = a + bT$  plotted on the basis of the heats of evaporation taken from a handbook.<sup>17</sup> The  $\Delta H_{\rm V}$  values for the C<sub>3</sub>-C<sub>9</sub> *n*-alkanols at higher temperatures, which are not available from the handbook.<sup>17</sup> were calculated for the 373–403 K range using the Clapevron-Clausius equation and the vapor pressures at saturation.<sup>19</sup> Analysis of the data given in Table 6 shows that in the case of *n*-nonanol, the regular pattern of variation of  $\Delta H_{\rm V}$  upon the change in the number of C atoms in the alkanol molecule is violated in this temperature range. At ambient temperature, the linear correlation holds over the homologous series of  $C_1-C_{14}$  n-alkanols.<sup>20</sup> The underestimated  $\Delta H_V$  value found for n-nonanol appears to be due to inaccuracy of the handbook values for the saturated vapor pressure for this substance.

The analysis of published data shows that the change in enthalpy upon the formation of hydrogen bonds in alkanol associates ( $\Delta H_{\text{H-b}}$ ) virtually does not depend on

**Table 5.** Relating the a and b coefficients for the dependences  $y = a + bn^*$  for  $\Delta H_S$  and  $\Delta S_S$  on the number of carbon atoms (n) in the n-alkanol molecule

| Parameter | 321—3              | 39 K                     | 373—403 K           |                     |  |
|-----------|--------------------|--------------------------|---------------------|---------------------|--|
|           | $-\Delta H_{ m S}$ | $-\Delta S_{\mathrm{S}}$ | $-\Delta H_{\rm S}$ | $-\Delta S_{\rm S}$ |  |
| a         | -15.8              | -37.3                    | -10.3               | -20.4               |  |
| b         | -3.8               | -3.8                     | -3.8                | -4.5                |  |
| r         | 0.99971            | 0.99829                  | 0.99994             | 0.99935             |  |
| sd        | 0.12               | 0.28                     | 0.09                | 0.35                |  |

Note. See Table 2.

| <i>n</i> -Alkanol | 321 K                 |                         | 331 K                 |                         | 339 K                 |                          | 298 K                             | 373—403 K             |                          |
|-------------------|-----------------------|-------------------------|-----------------------|-------------------------|-----------------------|--------------------------|-----------------------------------|-----------------------|--------------------------|
|                   | $\Delta H_{ m V}{}^a$ | $-\Delta H_{	ext{H-b}}$ | $\Delta H_{ m V}{}^a$ | $-\Delta H_{	ext{H-b}}$ | $\Delta H_{ m V}{}^a$ | $-\Delta H_{\text{H-b}}$ | $-\Delta H_{\text{H-b}}^{298\ b}$ | $\Delta H_{ m V}{}^c$ | $-\Delta H_{\text{H-b}}$ |
| Methanol          | 36.2                  | 20.6                    | 35.6                  | 20.0                    | 35.2                  | 19.5                     | 21.9                              | _                     | _                        |
| Ethanol           | 41.0                  | 17.5                    | 40.3                  | 16.8                    | 39.7                  | 16.3                     | 19.1                              | _                     | _                        |
| Propanol          | 46.2                  | 19.0                    | 45.2                  | 17.9                    | 44.3                  | 17.1                     | 21.5                              | 40.8                  | 19.1                     |
| Butanol           | 51.1                  | 19.8                    | 49.9                  | 18.6                    | 49.0                  | 17.7                     | 22.5                              | 44.6                  | 18.9                     |
| Pentanol          | 54.7                  | 19.9                    | 53.6                  | 18.8                    | 52.7                  | 17.9                     | 22.4                              | 46.5                  | 17.0                     |
| Hexanol           | _                     | _                       | _                     | _                       | _                     | _                        | _                                 | 51.4                  | 18.1                     |
| Heptanol          | _                     | _                       | _                     | _                       | _                     | _                        | _                                 | 56.4                  | 19.4                     |
| Octanol           | _                     | _                       | _                     | _                       | _                     | _                        | _                                 | 61.5                  | 20.7                     |
| Nonanol           | _                     | _                       |                       | _                       | _                     | _                        | _                                 | 60.9                  | 16.1                     |

**Table 6.** Values of  $\Delta H_{\rm V}$  and  $\Delta H_{\rm H-b}$  (in kJ mol<sup>-1</sup>) for *n*-alkanols

the number of C atoms in the *n*-alkanol and *n*-alkane molecule used as the inert diluent. The  $\Delta H_{\text{H-b}}$  values for  $C_1-C_5$  *n*-alkanols extrapolated to ambient temperature are in good agreement with the results obtained previously<sup>21-23</sup> (see Table 6). The value of  $\Delta H_{\text{H-b}}^{298} = 19.1 \text{ kJ mol}^{-1}$  that was found for ethanol coincides with the enthalpy of dimerization of pure ethanol,  $\Delta H_{\text{H-b}} = 19.0 \text{ kJ mol}^{-1}$ , determined using the data on static dielectric constants.<sup>15</sup>

Published data on the influence of temperature on the strength of associates  $^{21,22}$  show that the energy of hydrogen bonding in n-alkanols decreases somewhat with an increase in temperature. For example, as the temperature is raised from 298 to 308 K, the enthalpy of formation of hydrogen bonds in ethanol decreases from 23.2 to 22.2 kJ mol $^{-1}$ . $^{22}$  When the temperature increases from 303 to 333 K, the  $\Delta H_{\text{H-b}}$  value for EtOH decreases from 23.6 to 22.9 kJ mol $^{-1}$ . $^{24}$  Chromatographic analysis allows one to follow the temperature dependence of the enthalpy of alkanol association over a broader range. For example, it follows from Table 6 that on passing from ambient temperature to the 373—403 K temperature range, the  $\Delta H_{\text{H-b}}$  values for Pr $^{\text{n}}$ OH, Bu $^{\text{n}}$ OH, and n-pentanol diminish by 2.5, 3.6, and 5.4 kJ mol $^{-1}$ , respectively.

The method proposed for the estimation of the energy of hydrogen bonding in pure liquids is facile and convenient as compared to methods described in the literature, which are labor-consuming and often expensive, and provides nearly the same results on the energy of hydrogen bond formation.

## References

- V. A. Durov and V. T. Usacheva, Zh. Fiz. Khim., 1982, 56, 648 [J. Phys. Chem. USSR, 1982, 56 (Engl. Transl.)].
- 2. A. Amigo, J. L. Legido, R. Bravo, and M. J Paz Andrade, J. Chem. Thermodyn., 1989, 21, 1207.
- D. M. Trampe and C. A. Eckert, J. Chem. Eng. Data, 1990, 35, 156.

- C. Klofutar, S. Paljk, and U. Domanska, *Thermochim. Acta*, 1990, **158**, 301.
- U. Domanska, K. Domanski, C. Klofutar, and S. Paljk, Thermochim. Acta, 1990, 164, 227.
- X. Sun, W. Lu, Y. Liu, J. Hu, and Y. Chang, *Thermochim. Acta*, 1991, 176, 305.
- M. Yu. Nikiforov, I. A. Luk'yanchikova, M. V. Grechukhin,
   G. A. Al'per, and G. A. Krestov, *Zh. Fiz. Khim.*, 1996, 70,
   1043 [*Russ. J. Phys. Chem.*, 1996, 70 (Engl. Transl.)].
- 8. V. Brandani, Fluid Phase Equilib., 1983, 12, 87.
- M. Haughney, M. Ferrario, and I. R. Mc Donald, *J. Phys. Chem.*, 1987, 91, 4939.
- 10. A. J. Treszczanowicz and T. Treszczanowicz, *Bull. Pol. Acad. Sci. Chem.*, 1988, **36**, 339.
- 11. J. Zhao and Y. Hu, Fluid Phase Equilib., 1990, 57, 89.
- 12. Y. Demirel, Thermochim. Acta, 1990, 170, 197.
- K. Moorthi and I. Nagata, Fluid Phase Equilib., 1991, 63, 183.
- 14. B. L. Karger, Anal. Chem., 1967, 39, 24A.
- L. S. Ettre, J. High Resol. Chromatogr. and CC, 1993, 16, 258.
- R. V. Golovnya, Zh. Analit. Khim., 1991, 46, 1218 [J. Anal. Chem. USSR, 1991, 46 (Engl. Transl.)].
- I. A. Vasil'ev and V. M. Petrov, Termodinamicheskie svoistva kislorodsoderzhashchikh organicheskikh soedinenii [Thermodynamic Properties of Oxygen-Containing Organic Compounds], Khimiya, Leningrad, 1984 (in Russian).
- 18. Ya. I. Gerasimov, V. P. Dreving, E. N. Eremin, A. V. Kiselev, V. P. Lebedev, G. M. Panchenkov, and A. I. Shlygin, *Kurs Fizicheskoi Khimii* [*Physical Chemistry*], vol. 1, issua 2, Khimiya, Moscow, 1969, 130 pp. (in Russian).
- D. R. Stull, Vapor Pressure of Pure Substances, Industrial and Engineering Chemistry, 1947, 39, 517.
- C. G Screttas and M. Misha-Screttas, J. Org. Chem., 1991, 56, 1615.
- 21. R. H. Stokes and C. Burfitt, *J. Chem. Thermodyn.*, 1973, **5**, 623.
- 22. R. H. Stokes and M. Adamson, *J. Chem. Thermodyn.*, 1976, **8**, 683.
- 23. H. C. van Ness, C. A. Soczek, and N. K. Kochar, *J. Chem. Eng. Data*, 1967, **12**, 346.
- H. C. van Ness, C. A. Soczek, G. L. Peloquin, and R. L. Machado, *J. Chem. Eng. Data*, 1967, 12, 217.

Received May 26, 2000; in revised form November 21, 2000

<sup>&</sup>lt;sup>a</sup> The values were obtained by interpolation of reference data. <sup>17</sup>

<sup>&</sup>lt;sup>b</sup> The values were obtained by extrapolation of the  $\Delta H_{\text{H-b}}$  values for 321–339 K to 20 °C.

<sup>&</sup>lt;sup>c</sup> The values were calculated from reference data for saturated vapor pressures. <sup>19</sup>